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ABSTRACT
We present a model of a primary locus subject to viability selection and an unlinked locus that causes

sex-specific modification of the segregation ratio at the primary locus. If there is a balanced polymorphism
at the primary locus, a population undergoing Mendelian segregation can be invaded by modifier alleles
that cause sex-specific biases in the segregation ratio. Even though this effect is particularly strong if re-
ciprocal heterozygotes at the primary locus have distinct viabilities, as might occur with genomic imprinting,
it also applies if reciprocal heterozygotes have equal viabilities. The expected outcome of the evolution
of sex-specific segregation distorters is all-and-none segregation schemes in which one allele at the primary
locus undergoes complete drive in spermatogenesis and the other allele undergoes complete drive in
oogenesis. All-and-none segregation results in a population in which all individuals are maximally fit
heterozygotes. Unlinked modifiers that alter the segregation ratio are unable to invade such a population.
These results raise questions about the reasons for the ubiquity of Mendelian segregation.

THE two alleles at a heterozygous locus are equally rep- linked to the primary locus, then natural selection dis-
resented among the functional products of meiosis. favors modifier alleles that take the segregation ratio

This expectation was formalized at the origin of modern away from Mendelian expectations but favors alleles
genetics as the first of Mendel’s laws. The rule is not ab- that bring the segregation ratio closer to Mendelian ex-
solute, however. Mendelian segregation is violated by pectations. Therefore, Mendelian segregation has the
genes known as segregation distorters (Crow 1979). property of evolutionary genetic stability (Eshel 1996)
Given the strong selective forces associated with biased with respect to unlinked modifiers. Furthermore, an in-
transmission a question arises, Why is Mendelian segre- crease in recombination between the main and modifier
gation the rule and segregation distortion the exception locus would be favored by natural selection until they
rather than the other way around? become unlinked and segregation distortion is elimi-

Models addressing the evolution of fair segregation nated (Haig and Grafen 1991). Taken together, these
have considered a primary locus (with alleles A1 and A2) results seem to explain the ubiquity of fair segregation
undergoing viability selection and a modifier locus that in diploid organisms with multiple chromosomes by in-
determines the segregation ratio at the primary locus. voking mutual policing between genes over deviations
If the two loci are linked, modifiers that change the seg- from fair segregation. Fair segregation is maintained
regation ratio at the primary locus are able to invade a because most loci in the genome, and hence the major-
population undergoing Mendelian segregation (Prout ity of potential modifiers of the segregation ratio, are
et al . 1973; Hartl 1975; Liberman 1976). The intuitive unlinked to any particular locus. The intuitive explana-
reason for this result is that a modifier that confers a tion for Eshel’s (1985) result is that an unlinked modi-
segregation advantage on allele A 1 will be favored by nat- fier conferring a segregation advantage on A 1 is not pref-
ural selection because it comes to be preferentially asso- erentially associated with this allele, thus sharing in A 1

ciated with A 1 and thus shares in that allele’s segregation segregation advantage as much as in A 2 segregation dis-
advantage. By contrast, a modifier that confers a segre- advantage. Alleles at an unlinked modifier locus can gain
gation disadvantage on A1 (i.e., segregation advantage on no direct advantage from segregation distortion at the
A 2) will become preferentially associated with A 2 . The primary locus. Therefore, such alleles should favor what-
introduction of either kind of modifier by itself would ever segregation ratio maximizes population mean fit-
destabilize Mendelian segregation. ness, which in Eshel’s model is Mendelian segregation.

Eshel (1985) proposed an elegant solution to this co- Brief reflection, however, reveals that Mendelian seg-
nundrum. He showed that if the modifier locus is un- regation does not maximize mean fitness at a locus sub-

ject to heterozygote advantage because this segrega-
tion scheme always produces some offspring with the
less-fit homozygous genotypes. Rather, mean fitness is1Corresponding author: St. John’s College, Oxford OX1 3JP, United

Kingdom. E-mail: francisco.ubeda@sjc.ox.ac.uk maximized by what we call an all-and-none segregation
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Figure 1.—Sex-specific segregation distor-
tion. This chart summarizes a detailed review
of genetic systems in which segregation distor-
tion in autosomes has been reported (Rhoades
1942; Cameron and Moav 1957; Loegering
and Sears 1963; Maguire 1963; Rick 1966;
Maan 1975; van Heermert 1977; Gropp and
Winking 1981; Sandler and Golic 1985; Sil-
ver 1985; Lavery and James 1987; Agulnik
et al. 1990; Sano 1990; Foster and Whitten
1991; Lyttle 1991; Pardo-Manuel de Villena
et al. 2000). Each star corresponds to a partic-
ular haplotype (in italics) and its host orga-
nism. Its coordinates indicate the segregation
proportion in favor of that particular haplo-
type in males and females. The main diagonal
corresponds to sex-independent segregation
distortion. This is the assumption in previous
work on the evolution of Mendelian segre-
gation. The vertical axis in k � 1⁄2 corresponds
to female-limited segregation distortion while
the horizontal axis in � � 1⁄2 corresponds to
male-limited segregation distortion.

scheme in which one of the alleles is transmitted to all of reciprocal heterozygotes has important consequences
for the evolutionary stability of Mendelian segregation.sperm (or microspores) and no eggs (or megaspores) or

First we introduce a two-locus model for the inter-vice versa (Úbeda and Haig 2004). Under such a seg-
action between viability selection and segregation dis-regation scheme, all adults will be maximally fit hetero-
tortion. Then, we carry out stability analysis of the pa-zygotes. This possibility was considered neither by Eshel
rameter space for sex-specific segregation with a focus(1985) nor by earlier models of the evolution of the
on Mendelian and all-and-none segregation. Finally, wesegregation ratio because these models made the simpli-
analyze the particular case of permanent translocationfying assumption that segregation was the same in males
heterozygotes and discuss some possible explanationsand females. Assuming that a modifier of segregation has
for the scarcity of all-and-none segregation and theequal effects in spermatogenesis (or microsporogenesis)
ubiquity of Mendelian segregation.and oogenesis (or macrosporogenesis) is far from being

realistic, however. A detailed review of genetic systems
in which segregation distortion has been reported fails
to provide a single case with identical segregation in males MODEL
and females (see Figure 1 and references therein). This

Consider two autosomal loci, A and M , carried bycomes as no surprise since mechanisms underlying male
diploid individuals mating randomly within an infiniteand female gametogenesis are extremely different (Pardo-
population.Manuel de Villena and Sapienza 2001). Thus, it is

Alleles A 1 and A 2 determine the viability of their car-difficult to posit a modifier of segregation having identi-
rier. Let the viability parameters corresponding to geno-cal effects in the two processes.
types A 1A 1 , A 1A 2 , A 2A 1 , A 2A 2 be v 11 , v 12, v 21 , v 22 , whereWe extend previous analyses by considering modifiers
paternally inherited alleles are listed first. Viability pa-of the segregation acting in a sex-specific manner. In
rameters are arranged in a four-by-four matrix, V, with

addition, we allow for nonequivalent fitness of recipro-
elements Vij that are matrices themselves,

cal heterozygotes (i.e ., individuals with the same geno-
type but with the parental origins of their two alleles

Vi j � �v 11 v 12

v 21 v 22
� . (1)reversed) as might arise, for example, from genomic im-

printing (Pearce and Spencer 1992; Reik and Walter
2001). We show that the equivalence vs. nonequivalence Boldface lowercase and uppercase letters denote vectors
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and matrices, respectively. Superscript T represents the w � x · (W mm y) � y · (W fm x) � x · (W mf y) � y · (W ff x).
(5)transposed of a vector or matrix.

Alleles M 1 and M 2 determine the segregation ratio of
alleles at the A locus. Let the segregation ratio of A 1 cor-

STABILITY ANALYSIS
responding to genotypes M 1M 1 , M 1M 2 , M 2M 1 , M 2M 2 be
k 11 , k 12 , k 21 , k 22 in males and �11, �12 , �21 , �22 in females, We consider a scenario in which there is a balanced

polymorphism of A 1 and A 2 at the viability locus andwith k ij � k ji , �i j � �j i , and 0 � k ij , �i j � 1. The segregation
ratio of A 2 corresponding to genotype MiMj is 1 � k ij contemplate the fate of a rare allele M 2 introduced into

a population fixed for M 1 at the modifier locus. Wein males and 1 � �ij in females. Segregation ratios in
males are arranged in a matrix, Sm, with elements S m

i j assume that the initial frequency of alleles A 1 and A 2

corresponds to a stable equilibrium (x̂, ŷ) given fixationthat are matrices themselves,
of M 1 at the modifier locus. This equilibrium is stable
in the sense that it remains unaltered over small pertur-S m

i j � �
1⁄2 k ij

1 � k ij
1⁄2 � . (2)

bations of the frequency of A 1 and A 2 (short-term stabil-
ity) with M 1 fixed but it may not be stable to the introduc-Its equivalent for females is matrix S f with elements
tion of new alleles (long-term stability) (Eshel 1996).
To explore the long-term stability of equilibrium (x̂, ŷ)

S f
i j � �

1⁄2 �i j

1 � �i j
1⁄2 � . (3) to the introduction of M 2 we simplify our notation by

using (k , �) to refer to the segregation scheme (k 11, �11)
In a single generation, there are four possible trans- of the common M 1M 1 homozygotes, and (k�1 , ��1) to

mission paths for one haplotype: from male to male, refer to the segregation scheme (k 12 , �12) of rare M 1M 2
from male to female, from female to male, and from fe- heterozygotes.
male to female. Each path relates to a fitness matrix that Methods: To study the long-term stability of a particu-
results from multiplying the viability of the transmitting lar segregation scheme it is necessary to have a polymor-
individual and the segregation ratio of that particular phic equilibrium at the main locus; otherwise modifiers
haplotype: Wmm � V � Sm, Wmf � V � S f, W fm � VT � Sm, have no effect over segregation and their fate is deter-
W ff � VT � S f . The symbol � represents the Schur product mined by drift instead of selection. For this reason, we
of two matrices, which is another matrix with elements start by considering a short-term stable equilibrium (x̂,
V � S � Vi j � Si j � vmnsmn . Following Prout et al. (1973), ŷ) polymorphic at the main locus. Hence inequalities
Liberman (1976), and Eshel (1985) we assume no pleio- kv 12 � �v 21 � v 22 and (1 � �)v 12 � (1 � k)v 21 � v 11
tropic effect of the modifier locus over the fitness locus. derived in Úbeda and Haig (2004) must be satisfied.
Let the frequency of haplotypes A 1M 1 , A 2M 1 , A 1M 2 , Let matrix G be the gradient matrix of system (4)
A 2M 2 be x 1 , x 2 , x 3 , x 4 in sperm and y 1 , y 2 , y 3 , y 4 in eggs, evaluated at equilibrium (x̂, ŷ). Matrix G is a block
with 0 � x i , y j � 1, and �i x i � �j y j � 1. Given an initial matrix that contains submatrix L (see appendix a). If
distribution of haplotype frequencies, random union of the leading eigenvalue of matrix L � 1, �(L) � 1, modi-
gametes results in individuals whose chances of repro- fier M 2 introduced in a population at equilibrium (x̂, ŷ)
ducing are determined by the viability of each genotype. increases in frequency at a geometric rate. However, if
Prior to the formation of a new gamete pool, recombina- �(L) � 1 nothing can be concluded about the long-
tion and segregation take place. We assume indepen- term stability of (x̂, ŷ). We deal with this problem using
dent assortment between A and M because this is the the method suggested by Lessard (1989). In his work
most favorable case for Mendelian segregation (Eshel Lessard (1989) defines the term Q from a generic gra-
1985).The frequency of each haplotype in the next gen- dient matrix and its second derivatives, concluding that
eration is a particular equilibrium shows long-term instability when

Q is positive. Therefore, if the term Q derived from our
gradient matrix G (see appendix a) is positive, Q(G) �x �i �

x i(Wmmy)i � y i(W fmx)i � 1⁄2 	 m
i

x · (Wmmy) � y · (W fmx)
(4a)

0, modifier M 2 introduced in a population at equilib-
rium (x̂, ŷ) increases at an arithmetic rate. To summa-

y �i �
x i(Wmfy)i � y i(W ffx)i � 1⁄2 	 f

i

x · (Wmfy) � y · (W ffx)
, (4b) rize, allele M 2 will be favored by natural selection when

rare whenever �(L) � 1 or whenever �(L) � 1 and
where 	 i

m and 	 i
f represent the linkage disequilibrium Q(G) � 0. If this is the case, segregation scheme (k , �)

function for haplotype i in males and females, respec- does not show evolutionary genetic stability (EGS) and
tively. These are 	1

m � 	3
m � k12d, 	2

m � 	4
m � (k12 � 1)d can be invaded by segregation scheme (k�1 , ��1).

and 	 1
f � 	 3

f � �12d , 	 2
f � 	 4

f � (� 12 � 1)d , with d � v 12 We used analytical expressions for �(L) when we were
(x 1y 4 � x 3y 2) � v 21(x 4y 1 � x 2y 3). The symbol · represents able to derive these, but used numerical analysis to draw
the inner product of two vectors, which is the number conclusions when we were unable to derive an analytical
x · y � �i x i y i . The normalizing factor in (4) is the pop- solution. In our numerical analyses, for each combina-

tion of k and � considered we explored all combinationsulation mean fitness, which is equal in the two sexes,
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of v 11 , v 12 , v 21 , v 22 in the range [0.1, 1.9] separated at (due to either k�1 � ��1 or v 12 � v 21), �(L (1⁄2,1⁄2)) takes the
intervals 0.225. For each set of viability parameters yield- unit value. Hence, in principle, our analytical results
ing a short-term stable polymorphic equilibrium we ex- can be extended to the case of differential viability of
plore all combinations of k�1 and ��1 in the range [0.02, homozygote classes.
0.98] separated at intervals 0.08. We then calculated All-and-none segregation: Consider a population with
�(L) and use this value to classify the parameter sets. segregation (k , �) � (1, 0), one of the two possible forms
This routine was implemented in Matlab 5.3 (Math- of all-and-none segregation. Whenever v 12 � v 11 , v 22 the
works 1991). corresponding equilibrium (x̂, ŷ)(1,0) shows short-term

Results: Mendelian segregation: Consider a population stability. The simplifying assumption v 11 � v 22 allows us
undergoing Mendelian segregation (k , �) � (1⁄2 , 1⁄2). to get a tractable expression for �(L).
Whenever 1⁄2(v12 � v21) � v11 , v22 the corresponding equi- The leading eigenvalue of L evaluated at equilibrium
librium (x̂, ŷ)(1⁄2,1⁄2) shows short - term stability. The simpli- (x̂, ŷ)(1,0) is
fying assumption v 11 � v 22 allows us to get a tractable

�(L(1,0)) � 1 � (4v 12)�1� f 3 � f 4 � 4v 12 � √( f 3 � f 4)2 � 8v 11 f 3�,expression for �(L) and Q(G).
The leading eigenvalue of L evaluated at equilibrium (10)

(x̂, ŷ)(1⁄2,1⁄2) is
where f 3 � (k�1 � ��1)v 12 and f 4 � v 11 � v 12 . Simple

�(L (1⁄2,1⁄2)) � 1 � (2 f 2)�1� f 1 � f 2 � √( f 1 � f 2)2 � 8v 11 f 1�, algebra (see appendix b) shows that �(L (1,0)) � 1 when
(6)

v 12 � v 11 , v 22 . (11)
where f 1 � (k�1 � ��1)(v 12 � v 21) and f 2 � v 11 � v 12 �
v 21 � v 22 . Simple algebra (see appendix b) shows that Note that the short-term stability of equilibrium (x̂, ŷ)(1,0)

�(L (1⁄2,1⁄2)) � 1 when is a sufficient condition for its long-term stability. Whether
the reciprocal heterozygotes take the same or a different

(k�1 � ��1)(v 12 � v 21) � 0. (7)
value does not affect the value of �(L (1,0)).

Again we resort to numerical analysis to determineWhenever reciprocal heterozygotes have the same
whether our analytical results can be extended to thefitness f 1 � 0 and �(L (1⁄2,1⁄2)) � 1. Term Q(G) evaluated
more general case of differential viability of homozygoteat equilibrium (x̂, ŷ)(1⁄2,1⁄2) is
classes. In our systematic exploration of the parameter

Q(G(1⁄2,1⁄2)) � g 1(v 11/v 12)2 � (2g 1 � g 2)(v 11/v 12) � g 3 , space we find 310,284 combinations of v 11 , v 12 , v 21 , v 22

(8) yielding a short-term stable polymorphic equilibrium.
We failed to find a single case in which �(L (1,0)) 
 1.where g 1 � 2(1 � k�1 � ��1), g 2 � 2(k�1 � ��1), and
This allows us to extend our analytical results to theg 3 � (1 � 2k�1)(1 � 2��1).
case of differential viability of homozygote classes.The sign of Q(G) depends on the relative viabilities

Other segregation schemes: We used numerical analysisof homozygotes and heterozygotes. The two extreme
to investigate the long-term stability of all combinationscases are lethal homozygotes (v 11/v 12 � 0) and equal
of k and � in the range [0.02, 0.98] separated at intervalsviability of both homozygote and heterozygote classes
0.08. We failed to find a single case in which (k , �)(v 11/v 12 � 1). Taking limits in Q(G) for each of these
could not be invaded by some (k�1 , ��1).cases we get

Conclusion: Our results are simplest when there is a
lim

v11/v12→0
Q(G(1⁄2,1⁄2)) � (1 � 2k�1)(1 � 2��1) (9a) balanced polymorphism at the primary locus for a fit-

ness scheme in which reciprocal heterozygotes have dis-
tinct fitnesses (v 12 � v 21). In this case, a rare modifierlim

v11/v12→1
Q(G(1⁄2,1⁄2)) � 4(1 � k�1 � ��1)2 . (9b)

coding for a segregation scheme (k�1 , ��1) such that
(k�1 � ��1)(v 12 � v 21) � 0 can invade a populationThese analytical results rely on the simplifying assump-
fixed for Mendelian segregation. Suppose that v 12 � v 21;tion of equal viability of homozygote classes. We do
then the population can be invaded by any segregationnot expect this assumption often to be true and use
scheme such that A 1 is transmitted in greater proportionnumerical analysis to find out whether our analytical
to sperm than to eggs, i.e ., k�1 � ��1 (Figure 2a.2).results can be extended to the more general case of
The reason for this instability is straightforward. At thedifferential viability of homozygote classes.
Mendelian equilibrium, A 1 has higher fitness whenIn our systematic exploration of the parameter space
transmitted via sperm than via eggs and A 2 has higherwe find 293,384 combinations of v 11 , v 12 , v 21 , v 22 yield-
fitness when transmitted via eggs than via sperm. There-ing a short-term stable polymorphic equilibrium. In the
fore, heterozygotes would gain a reproductive advantage119,496 cases in which (k�1 � ��1)(v12 � v21) 
 0, eigen-
by increasing the frequency of A 1 among their spermvalue �(L (1⁄2,1⁄2)) � 1. In the 119,496 cases in which (k�1 �
or by increasing the frequency of A 2 among their eggs.��1)(v 12 � v 21) � 0, eigenvalue �(L (1⁄2,1⁄2)) 
 1. Finally, in

the 54,392 cases in which (k�1 � ��1)(v 12 � v 21) � 0 Of particular significance, Mendelian segregation can
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Figure 2.—Stability of Mendelian segregation.
(a) Differential fitness of reciprocal heterozygotes
(v 12 � v 21). Mendelian segregation (MS) is sus-
ceptible to invasion by (k �1, ��1) when this segre-
gation scheme maps onto the shaded area. (a.1)
v 21 � v 12 requires ��1 � k�1. (a.2) v 12 � v 21 requires
k �1 � ��1. Open circles represent segregation
schemes showing evolutionary genetic instability.
However, all-and-none segregation (A&N) cannot
be invaded by any other segregation scheme. Solid
circles represent segregation schemes showing
evolutionary genetic stability. (b) Identical fitness
of reciprocal heterozygotes (v 12 � v 21). Invading
segregation schemes are confined beneath the
surface in b.1. Slices of this surface at v 11/v 12 �
5/8 (b.2) and v 11/v 12 � 0 (b.3) provide graphics
with the same interpretation as the ones in a.

be invaded by segregation schemes (k�1 , 1⁄2), where metric rate when reciprocal heterozygotes have differ-
ent viabilities, but at an arithmetic rate when reciprocalk�1 � 1⁄2 or (1⁄2 , ��1), where ��1 
 1⁄2 . That is, changes in

segregation ratio do not need to be coordinated be- heterozygotes have identical viability. A rare modifier
coding for segregation scheme (k�1 , ��1) located belowtween the sexes: a successful modifier can change the

segregation ratio in spermatogenesis without a change the surface Q(G) � 0 will be favored by natural selection
over a modifier coding for Mendelian segregation andin oogenesis, or the reverse.

Mendelian segregation also lacks evolutionary stabil- fixed in the population (Figure 2b.1). Simple observa-
tion of surface Q(G) � 0 reveals that successful modifi-ity if reciprocal heterozygotes have identical viability

(v 12 � v 21), but in this case the selective forces acting ers must code for a segregation scheme with opposite
effects in spermatogenesis and oogenesis. Moreover, theon modifiers of the segregation ratio are weaker. Spe-

cifically, successful modifiers initially increase at a geo- precision with which the segregation advantage in one
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sex is complemented by a segregation disadvantage in gous progeny in sexual populations with heterozygote
advantage (Crow 1970). Drive load is the reduction inthe opposite sex becomes increasingly stringent as there
mean fitness due to the production of progeny less fitis a progressively smaller advantage of A 1A 2 heterozy-
than other zygotic combinations in populations withgotes over homozygous genotypes.
meiotic drive (Crow 1970).Under the simplifying assumption that v 11 � v 22 , the

While the enforcement of Mendelian segregationtwo extreme cases are minimum heterozygote advan-
eliminates drive load it does not affect segregation loadtage, v 11/v 12 � 1, and maximum heterozygote advan-
(Figure 3). However, if sex-specific segregation is allowed,tage, v 11/v 12 � 0. In the first scenario, it is only modifiers
distorters can modify both types of load (Figure 3). Ifwith equal, but opposite, effects in males and females,
the net result is a reduction of load, distorters are bene-i.e ., k�1 � ��1 � 1, that can invade a population in
ficial to their host genotype and we would expect themwhich Mendelian segregation is the norm. In the second
to invade a Mendelian population. That is, distorters ofscenario, it is enough that the modifier has opposite ef-
Mendelian segregation can be beneficial to their hostfects in males and females, i.e ., (k�1 � 1⁄2)(��1 � 1⁄2) 

genotype if they reduce segregation load. This might0, to be favored by natural selection (Figure 2b.3). For
call into question the use of the adjective “ultraselfish”example, consider v 12 � v 21 and v 11 � v 22 � 0; a Mende-
(Crow 1988) to describe segregation distorters.lian population can be invaded by a modifier that in-

Following this intuitive reasoning, we would expect tocreases the transmission of A 1 to sperm (k�1 � 1⁄2) but
find that any segregation scheme other than all-and-nonereduces its transmission to eggs (��1 
 1⁄2). The same
segregation shows evolutionary instability, the rationalepopulation can be invaded by a modifier that reduces
being that even when alternative segregation schemesthe transmission of A 1 to sperm (k�1 
 1⁄2) but increases
are reducing the genetic load there will always be roomits transmission to eggs (��1 � 1⁄2) (Figure 2b.3).
for further reduction until all-and-none segregation isIf reciprocal heterozygotes have identical viability, the
reached. All-and-none is the only segregation schememodifiers that can invade a population fixed for Mende-
that gets rid of both genetic loads (Figure 3).lian segregation must cause coordinated changes in

Our results back this intuition. For example, considerspermatogenesis and oogenesis. This is because A 1 and
the case v 12 � v 21 in which fair segregation can be in-A 2 have the same fitness whether transmitted via eggs
vaded by any segregation scheme (k�1 , ��1) such thator sperm when allele frequencies are at the equilibrium
k�1 � ��1 . Numerical evidence suggests that none ofdetermined by Mendelian segregation. Selection is ini-
these segregation schemes except all-and-none segre-tially weak because, in a panmictic population, the rare
gation of the type (1, 0) show evolutionary stability (seeeggs produced by the modified segregation scheme gain
Figure 4). For another example, consider the case v 12 �a fitness advantage only from their even rarer unions
v 21 and v 11 � v 22 � 0 in which fair segregation can bewith the rare sperm produced by the modified segre-
invaded by any segregation scheme (k�1 , ��1) suchgation scheme. Modifications need to be coordinated
that (k�1 � 1⁄2)(��1 � 1⁄2) 
 0. Numerical evidence sug-between oogenesis and spermatogenesis because these
gests that none of these segregation schemes exceptunions need to produce an increased frequency of het-
all-and-none segregation show evolutionary stability. Fur-erozygotes whereas some combinations of changes, in-
thermore, analytical results demonstrate that all-and-nonecluding unilateral changes in one sex but not in the
segregation of the type (1, 0) shows evolutionary stabilityother, will result in increased production of the less-fit
when v 12 � v 11 , v 22 while its symmetric segregation (0,homozygous genotypes.
1) shows evolutionary stability when v 21 � v 11 , v 22 .The intuitive reason why fair segregation shows evolu-

Making use of local stability analysis we showed thattionary instability is that this segregation scheme does
Mendelian segregation is unstable while all-and-nonenot maximize population mean fitness when sex-specific
segregation is stable. This suggests, but does not guaran-segregation is allowed (Úbeda and Haig 2004). Hence,
tee, that a population undergoing fair segregation wouldthose segregation schemes able to bias the offspring
be replaced by another undergoing all-and-none segre-production in favor of the fittest heterozygote will be
gation. However, iterating equations in (4) we foundfavored by natural selection. The link between fitness
out that under the same conditions derived from localand segregation can be clarified by using the concept
stability analysis, all-and-none segregation is able to re-of genetic load. Crow (1970) defined genetic load as
place Mendelian segregation. The full dynamics of athe fraction by which the population mean fitness at
rare all-and-none modifier on a Mendelian populationequilibrium differs from the fitness of the most viable
are presented in Figure 5. They were generated makinggenotype,
use of a script written in Matlab (Mathworks 1991).

L �
max{vij } � w

max{vij }
. (12)

DISCUSSION

Crow differentiated two kinds of genetic load that are Eshel (1985) analyzed the fate of new mutations at
relevant to our argument. Segregation load is the reduc- a modifier locus that governed the segregation ratio at

an unlinked locus. He showed that for any configurationtion in mean fitness due to the production of homozy-
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Figure 3.—Genetic load in terms of fitness.
The area of each square represents the genetic
load corresponding to segregation scheme (k,
�). The ordering of the viability parameters
considered is v 12 � v 21 � v 11 � v 22. The genetic
load has two components, drive load and segre-
gation load. With sex-independent segregation
(k � �) we consider the drive load component
only. Any segregation away from Mendelian
expectations increases the genetic load. With
perfect compensation between drive and drag
in the two sexes (k � � � 1) we consider the
segregation load component only. Any segre-
gation away from all-and-none expectations in-
creases the genetic load. All-and-none segre-
gation is the only segregation scheme that gets
rid off both types of load.

of alleles at the modifier locus, mutant alleles that ini- of Mendelian segregation in one sex is neutral, but once
tially reduce meiotic drive always increase in frequency, there is a bias in segregation of one of the “alleles” to
whereas mutant alleles that initially increase meiotic one class of gametes/spores, there is positive selection
drive decrease in frequency. His model assumed equal for modifiers that established the opposite bias in segre-
segregation ratios in the two sexes. We have shown that gation to the other class of gametes/spores.
Eshel’s conclusion does not hold when sex-specific mod- Our model suggests an alternative path to permanent
ifiers of segregation are considered. Instead, we have heterozygosity. If there is differential viability of recipro-
shown that if there is a balanced polymorphism at a cal heterozygotes, one allele will have higher fitness at
locus determining viability, then unlinked modifiers will the Mendelian equilibrium when transmitted by sperm/
favor an all-and-none segregation scheme in which one microspores and the other allele will have higher fitness
allele drives completely in oogenesis and the other allele when transmitted by eggs/megaspores. Therefore, mod-
drives completely in spermatogenesis. Further, we have ifiers of the segregation ratio in one sex will be favored
shown that this segregation scheme has properties of by selection, even without an opposite bias of the segre-
long-term evolutionary stability, given the assumptions gation ratio in the other sex (von Wangenheim 1962
of our model. provides evidence of genomic imprinting in Oenothera;

All-and-none segregation is not a theoretical caprice: see interpretation of his results in Haig and Westoby
it is the segregation scheme employed by at least 57 1991). Unlike Charlesworth’s model, our model does
species of flowering plants (in seven genera) that exist not require initial inbreeding. The natural history of per-
as permanent translocation heterozygotes (Holsinger manent translocation heterozygosity does not strongly
and Ellstrand 1984). For example, some species of favor one model or the other, because these species are
Oenothera are permanent structural heterozygotes for usually self-fertilizing but with outcrossing relatives (e.g .,
two chromosome complexes, with one set of chromo- Grant 1975, p. 407).
somes (the �-complex) transmitted to all megaspores It has not escaped our notice that Mendelian segre-
(� � 1), and the other set (the �-complex) transmitted gation is the rule and all-and-none segregation the rare
to all microspores (k � 0) (Cleland 1972). exception. What processes then could account for the

Charlesworth (1979) proposed that systems of per- ubiquity of Mendelian segregation? We make four sug-
manent translocation heterozygosity evolved to fix a bene- gestions. There may well be others.
ficial heterozygous genotype in inbred populations. His

1. We have shown that there is strong selection on un-model assumed heterozygote advantage and obligate
self-fertilization. Under these assumptions, any modifier linked modifiers to favor departures from Mendelian
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Figure 4.—Evolutionary stability of segregation schemes other than Mendelian. Let v 11 � 1, v 12 � 1.5, v 21 � 2, v 22 � 0.6.
For each combination of k in {0.1, 0.3, 0.5} and � in {0.5, 0.7, 0.9} we draw a map of the genetic load (dotted squares) in the
(k �1, ��1) plane. Which combination of k and � corresponds to each window is indicated by a number above and to the right
of the graphic and is represented by a circle in the (k �1 , ��1) plane. Segregation scheme (k , �) is susceptible to invasion by any
other segregation scheme (k �1 , ��1) mapping onto the shaded area. In particular, all-and-none segregation of the type (0, 1)
can invade any (k , �) and, considering local deviations from (k , �), the ones that can invade always reduce the genetic load.

segregation for a balanced polymorphism at which The possibility of balanced polymorphisms with
v 12 � v 21 cannot be rejected so simply, however. Im-reciprocal heterozygotes have different fitness (v 12 �

v 21). However, such balanced polymorphisms may be printed genes are often clustered, with maternally
expressed genes tightly linked to paternally ex-rare. In the simplest form of genomic imprinting,

an allele is silent when inherited from one parent, pressed genes. Moreover, some imprinted genes are
expressed biallelically in most tissues, but have mono-but expressed when inherited from the other. If so,

the allele inherited from one parent does not affect allelic expression in some cell types. In such cases,
an imprinted haplotype will have effects when it isfitness and each heterozygous genotype has a fitness

equal to one of the homozygous genotypes (either both maternally and paternally inherited. Thus, the
heterozygous genotypes need not be phenotypicallyv 12 � v 11 and v 21 � v 22 or v 12 � v 22 and v 21 � v 11). No

balanced polymorphism is possible for such fitness equivalent to the homozygous genotypes. The model
of this article also assumes that fitnesses are fixedschemes (Pearce and Spencer 1992).
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Figure 5.—Haplotype dynam-
ics. We represent the change in
frequency of all haplotypes after
a rare modifier of segregation
arises. The perpendicular dis-
tance from the bottom of the tri-
angle to a particular point is the
frequency of A 1M 1 , from the left
it is that of A 1M 2 , and from the
right it is that of A 2M 2 . We use
a color code to represent the fre-
quency of A 2M 1 . Vertex (1, 0, 0)
corresponds to extinction of hap-
lotypes A 2M 2 and A 1M 2 ; (0, 1, 0),
to extinction of A 1M 1 and A 2M 2 ;
and (0, 0, 1), to extinction of
A 1M 1 and A 1M 2 . Consider a pop-
ulation at a polymorphic short-
term stable equilibrium at the
main locus but fixed for allele
M 1 coding for Mendelian segre-
gation (k � � � 1⁄2). A mutant
modifier M 2 is introduced in pro-
portion ε � 5 
 10�3 . (a) Non-
symmetric viability of reciprocal
heterozygotes. Let v 11 � 0.8, v 12 �
1.6, v 21 � 2, and v 22 � 0.8. Our
results show that allele M 2 cod-
ing for segregation scheme (0,
1) in homozygotes fully replaces
allele M 1 . Specifically, haplo-
types A 2M 2 and A 1M 2 become
fixed in sperm and eggs, respec-
tively. (b) Symmetric viability of
reciprocal heterozygotes. Let
v 11 � 0.8, v 12 � v 21 � 1.8, and
v 22 � 0.8. Our results show that
both (b.1) an allele M 2 coding for
segregation scheme (0, 1) in ho-
mozygotes and (b.2) an alleleM 2

coding for segregation scheme (1, 0) in homozygotes fully replace allele M 1 . While in the former case haplotypes A 2M 2 and A 1M 2

become fixed in sperm and eggs, in the latter case they become fixed in eggs and sperm, respectively. In the absence of imprinting
the number of generations represented is four times larger than that in its presence. Arrows indicate the sense in which time increases.

properties of an individual’s genotype. However, if regation ratio in one sex and decrease the segre-
gation ratio in the other sex (or two modifiers mustan individual’s fitness is influenced by the genotypes

of other family members, the fitnesses of the different both be present with these opposite effects). A mod-
ifier that causes exactly opposite changes in the segre-genotypes are frequency dependent. A 1A 2 heterozy-

gotes may exist in family environments different from gation ratios of the two sexes can always increase
in frequency, albeit slowly, if there is heterozygousthose of A 2A 1 heterozygotes and from that of either

homozygous genotype (e.g., in models of sib competi- advantage. Whether a modifier that causes an increase
in one sex but an unequal decrease in the other sextion with multiple paternity within litters). In such

models, A 1A 2 and A 2A 1 heterozygotes may have dif- can increase in frequency depends on the precise
relations between homozygous and heterozygous via-ferent fitnesses even at an unimprinted locus.

2. Selection on unlinked modifiers to favor departures bilities. This requirement for coordinated changes
in spermatogenesis and oogenesis is possibly a majorfrom Mendelian segregation is weak for balanced

polymorphisms at which reciprocal heterozygotes constraint on the evolution of non-Mendelian segre-
gation schemes. Our model assumes a single locushave the same fitness (v 12 � v 21). To a first-order

approximation, both alleles confer the same average determining the segregation ratio that must have
effects in both oogenesis and spermatogenesis. Thefitness when transmitted via eggs or sperm. The ef-

fects of rare modifiers on fitness are of the second extent to which this constraint would persist in a
model with sex-specific modifiers of segregation atorder in a panmictic population. Moreover, for a rare

modifier to increase in frequency at the Mendelian multiple loci is a question for future study.
3. Systems of permanent heterozygosity maintained byequilibrium it must simultaneously increase the seg-
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APPENDIX A

Gradient matrix and first derivatives: Gradient matrix G is a matrix with elements that are matrices themselves:

Gi j � ��x �i /�xj �x �i /�yj

�y�i /�xj �y�i /�yj
��

(x̂,ŷ)

. (A1)

Straight differentiation in (4) yields the first-order derivatives

�x �i

�xj
�
(x̂,ŷ)
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(x̂,ŷ)�	i j(Wmmy)i � yiw fm
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(x̂,ŷ)�	i j(Wmfy)i � yiw ff
i j � 1⁄2

�	f
i

�xj

� yi
�w
�xj

��
(x̂,ŷ)
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where

�w
�xj

�
(x̂,ŷ)

� (Wmm ŷ)j � (W fmTŷ)j � (Wmf ŷ)j � (W ffTŷ)j (A3a)

�w
�yj

�
(x̂,ŷ)

� (WmmTx̂)j � (W fm x̂)j � (WmfTx̂)j � (W ff x̂)j (A3b)

and 	i j is the Kronecker delta; that is, 	i j � 1 if i � j , and 	i j � 0 otherwise.
Let S � Gi ji , j � {1, 2}; R � Gi ji � {1, 2}, j � {3, 4}; and L � Gi ji , j � {3, 4}. Matrix G has the structure

G � �S R
0 L � , (A4)

where 0 is a four-by-four matrix of zeros. Such a structure simplifies our calculations concerning the spectral radius
of matrix G.

The leading eigenvalue of G is greater than one if either the leading eigenvalue of S or the leading eigenvalue
of L is greater than one. Furthermore, the leading eigenvalue of S must be less than one given the short-term
stability of (x̂, ŷ). Hence, the long-term stability of equilibrium (x̂, ŷ) is characterized by the leading eigenvalue of
L, �(L). The full expression of L is

L(k11,�11) �
1

2w

⎡
⎢
⎢
⎢
⎢
⎣

v 11y 1 � k 12v 12y 2 v 11x 1 � k 12v 21x 2 k 12v 21y 1 k 12v 12x 1
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(1 � k 12)v 12y 2 (1 � k 12)v 21x 2 v 22y 2 � (1 � k 12)v 21y 1 v 22x 2 � (1 � k 12)v 12x 1

(1 � �12)v 12y 2 (1 � �12)v 21x 2 v 22y 2 � (1 � �12)v 21y 1 v 22x 2 � (1 � �12)v 12x 1

⎤
⎥
⎥
⎥
⎥
⎦
�

(x̂,ŷ)(k11,�11)

, (A5)

where

w � v 11x 1y 1 � v 12x 1y 2 � v 21x 2y 1 � v 22x 2y 2 . (A6)

Hessian matrix and second derivatives: Hessian matrix H is a matrix with elements that are matrices themselves:
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H x
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Straight differentiation in (A2) yields the second-order derivatives with respect to xl ,
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and with respect to yl ,
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. (A9d)

The term Q(G) results from multiplying the left eigenvector of L , elements of H , and pairs of values of the right
eigenvector of G as specified in Lessard (1989).

APPENDIX B

Spectral radius of L( 1⁄2,1⁄2) � 1: The leading eigenvalue of L(1⁄2,1⁄2) is

�(L (1⁄2,1⁄ 2)) � 1 � (2 f 2)�1� f 1 � f 2 � √( f 1 � f 2)2 � 8v 11 f 1� , (B1)

where f 1 � (k 12 � �12)(v 12 � v 21) and f 2 � 2v 11 � v 12 � v 21 . Hence �(L( 1⁄2,1⁄2)) � 1 whenever

(2 f 2)�1� f 1 � f 2 � √( f 1 � f 2)2 � 8v 11 f 1� � 0. (B2)

Given that f 2 � 0 the above inequality simplifies to

√( f 1 � f 2)2 � 8v 11 f 1 � f 2 � f 1 . (B3)

Given that f 2 � f 1 � 0 we can square both sides of the above inequality keeping its sense:

( f 1 � f 2)2 � 8v 11 f 1 � ( f 2 � f 1)2

f 1 f 2 � 2v 11 f1 . (B4)

There are two alternatives f 1 � 0 and f 1 
 0. If f 1 � 0 inequality (B4) reduces to f 2 � 2v 11 . Substituting f 2 for its
expression and simplifying the latter inequality reads v 12 � v 21 � 0, which is always true. If f 1 
 0 inequality (B4)
reduces to f 2 � 2v 11 , which is always false.

Consequently, the necessary and sufficient condition for the long-term instability of Mendelian segregation is f 1 �
0. Substituting f 1 for its expression and simplifying, this inequality reads
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(k 12 � �12)(v 12 � v 21) � 0. (B5)

Spectral radius of L(1,0) 
 1: The leading eigenvalue of L (1,0) is

�(L (1,0)) � 1 � (4v 12)�1� f 3 � f 4 � 4v 12 � √( f 3 � f 4)2 � 8v 11 f 3� , (B6)

where f 3 � (k 12 � �12)v 12 and f 4 � v 11 � v 12 . Hence L (1,0) 
 1 whenever

√( f 3 � f 4)2 � 8v 11 f 3 
 4v 12 � ( f 3 � f 4). (B7)

There are two alternatives 4v 12 � f 3 � f 4 and 4v 12 
 f 3 � f 4 . If 4v 12 � f 3 � f 4 , we can square both sides of inequal-
ity (B7), keeping its sense:

v 12( f 3 � f 4 � 2v 12) 
 v 11 f 3 . (B8)

Substituting f3 and f4 for their expression and simplifying, we get the pair of conditions (3 � �12 � k12)v12 � v11 and
v 12 � v 11 . Given that 3 � �12 � k 12 � 1, inequality v 12 � v 11 is the more restrictive of the two conditions and,
therefore, the only one that is relevant. The latter condition is always true if equilibrium (x̂, ŷ)(1,0) is short-term
stable.

If 4v 12 
 f 3 � f 4 , we have to reverse the sense of inequality (B7) when squaring:

v 12( f 3 � f 4 � 2v 12) � v 11 f 3 . (B9)

Substituting f 3 and f 4 for their expression and simplifying, we get condition v 12 
 v 11 , which is always false if
equilibrium (x̂, ŷ)(1,0) is short-term stable.

To summarize, condition v 12 � v 11 , v 22 is necessary and sufficient to guarantee the long-term stability of the
segregation scheme (1, 0). This is the same condition required for the short-term stability of equilibrium (x̂, ŷ)(1,0).

Spectral radius of L(0,1) 
 1: Similarly, the leading eigenvalue of L (0,1) is

�(L (0,1)) � 1 � (4v 21)�1� f 5 � f 6 � 4v 21 � √( f 5 � f 6)2 � 8v 11 f 5�, (B10)

where f 5 � (��1 � k�1)v 21 and f 6 � v 11 � v 21 .
Hence L (0,1) 
 1 whenever

√( f 5 � f 6)2 � 8v 11 f 5 
 4v 21 � ( f 5 � f 6). (B11)

If 4v 12 � f 5 � f 6 , we can square both sides of inequality (B7), keeping its sense:

v 21( f 5 � f 6 � 2v 21) 
 v 11 f 5 . (B12)

Substituting f5 and f6 for their expression and simplifying, we get condition v21 � v11, which is always true if equilibrium
(x̂, ŷ)(1,0) is short-term stable.




